Design and characterization of the tumor vaccine MGN1601, allogeneic fourfold gene-modified vaccine cells combined with a TLR-9 agonist
نویسندگان
چکیده
The tumor vaccine MGN1601 was designed and developed for treatment of metastatic renal cell carcinoma (mRCC). MGN1601 consists of a combination of fourfold gene-modified cells with the toll-like receptor 9 agonist dSLIM, a powerful connector of innate and adaptive immunity. Vaccine cells originate from a renal cell carcinoma cell line (grown from renal cell carcinoma tissue), express a variety of known tumor-associated antigens (TAA), and are gene modified to transiently express two co-stimulatory molecules, CD80 and CD154, and two cytokines, GM-CSF and IL-7, aimed to support immune response. Proof of concept of the designed vaccine was shown in mice: The murine homologue of the vaccine efficiently (100%) prevented tumor growth when used as prophylactic vaccine in a syngeneic setting. Use of the vaccine in a therapeutic setting showed complete response in 92% of mice as well as synergistic action and necessity of the components. In addition, specific cellular and humoral immune responses in mice were found when used in an allogeneic setting. Immune response to the vaccine was also shown in mRCC patients treated with MGN1601: Peptide array analysis revealed humoral CD4-based immune response to TAA expressed on vaccine cells, including survivin, cyclin D1, and stromelysin.
منابع مشابه
TLR agonist rHP-NAP as an Adjuvant of Dendritic Cell-Based Vaccine to Enhance Anti-Melanoma Response
Background: Melanoma is a common and malignant cutaneous tumor, which is responsible for a large proportion of skin cancer deaths. Dendritic cell (DC)-based vaccines have achieved positive results in the treatment of melanoma because of their ability to induce cytotoxic response to facilitate tumor elimination. Objective: To improve the efficacy of dendritic ce...
متن کاملWhole Tumor Cell Vaccine Adjuvants: Comparing IL-12 to IL-2 and IL-15
Cancer immunotherapy (passive or active) involves treatments which promote the ability of the immune system to fight tumor cells. Several types of immunotherapeutic agents, such as monoclonal antibodies, immune checkpoint inhibitors, non-specific immunomodulatory agents, and cancer vaccines are currently under intensive investigation in preclinical and clinical trials. Cancer vaccines induce pe...
متن کاملDesign and in Silico Construction of New Efficient Antibodies Against Gastric Tumor-associated Antigens Towards Introducing Combined Strategy for Vaccine Tumor Therapy
Introduction: Gastric cancer, as the second reason of cancer mortality around the world, is defined as one of the serious health problems and a wide range of current research is focused to overcome the challenges relevant to its successful therapy. Employing recent approaches in the field of vaccine tumor therapy and immunotherapic strategies such as utilization of monoclonal antibodies can pla...
متن کاملTLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma
Dendritic cell (DC)-derived exosomes (Dexo) contain the machinery necessary to activate potent antigen-specific immune responses. As promising cell-free immunogens, Dexo have been tested in previous clinical trials for cancer vaccine immunotherapy, yet resulted in limited therapeutic benefit. Here, we explore a novel Dexo vaccine formulation composed of Dexo purified from DCs loaded with antige...
متن کاملIn silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کامل